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A table is given of putative solutions to the Fejes problem: to find the maximum value of the smallest 
angular distance between any two of N points movable on the surface of a sphere. Values of N run without 
omission up to 27 with six sporadic cases thereafter. Some applications of this system as a model are 
discussed. 

The question of the arrangements of N equal spheres on 
a spherical surface is of relevance to the theory of 
coordination polyhedra. We will examine here only the 
Fejes problem (Fejes Toth, 1952), which is to find 
the maximum value 6 of the smallest angular distance 
between any two of N points movable on the surface 
of a sphere. This purely geometrical ('hard-sphere') 
problem is basic to the further considerations of the 
Thomson problem (where the points repel each other 
according to the inverse square law) and others 
involving energetic considerations. 

The Fejes problem has been reviewed by Whyte 
(1952) and by Coxeter (1962) but the improvement in 
computing facilities, particularly the advent of the 
pocket calculator with stored program, has made 
further results available. 

The Fejes problem as formulated above is equivalent 
to finding the densest packing of N hard spheres of unit 
radius on the surface of a sphere of radius R where 
R = cosec (6 /2)-  1. Of interest also is the fraction p of 
the surface of the sphere included within circles of 
radius (6/2) on its surface. This superficial packing 
fraction is p=(N/2)[I-cos(6/2)]. For a sphere of 
infinite radius (hexagonal close-packing) p = n/(2V3 ) = 
0"90690. 

The close packing of equal spheres on a cylindrical 
surface (Erickson, 1973) is essentially regular and is 
readily systematized, but packing on a spherical sur- 
face (or on ellipsoidal or hyperbolic surfaces) is much 
less tractable. Packing on, for example, ellipsoidal 
surfaces arises in considering the arrangement of coat 
protein molecules on the surfaces of bacteria (Nabarro 
& Harris, 1971). Since, on a convex surface a ring of six 
circles in contact would leave a central circle free to 
'rattle', the regular hexagonal close packing of circles 
(the obvious solution for N--oe)  is excluded. Even 
though N may be large, and the surface packing 
approximately close-packed, there must be twelve 
dislocations (or their equivalents) where five, and not 
six, triangles meet at a point. Suppose that there are 
1/5 such vertices and V6 vertices where six triangles 

meet, then from the Euler relation F + V= E + 2, since 
all faces are triangular and two faces share an edge, 
E=~F. V=Vs+V6 and F=(5Vs+6V6)/3 so that we 
obtain 1/5= 12. Physically, it is only necessary to 
postulate that these twelve dislocations are as far from 
each other as possible and the icosahedral tessella- 
tions result. 

We include a table (Table 1) of what we, at present, 
believe to be the closest packings found. Some of the 
configurations have been collected from the literature 
(Habicht & Van der Waerden, 1951; Schiitte & Van 
der Waerden, 1951; Whyte, 1952; Coxeter, 1962; 
Goldberg, 1965; Pirl, 1969), while the new values have 
been calculated using iterative procedures on a pocket 
calculator, and a simple building program on a digital 
computer. The problem of actually proving that a 
particular configuration is an absolute maximum of 6 
is difficult, although it has been achieved in a few 
cases. We take the empirical view of accepting the 
values listed as maxima until they are bettered. It is 
unlikely that more efficient packings exist close to the 
given configurations, but we cannot say whether these 
are accessible through cooperative movements of the 
spheres. Our system is thus a simplified case of the 
energy-minimization problem (e.g., protein folding, 
nucleation) with a small number of variables, and 
could be used as a test model for techniques designed 
to overcome the problems of false minima, and the 
location of, and passage over, saddle points. 

For example, in each case in Table 1, every circle is 
fixed in position by three or more contacts, not all in 
the same semi-circle. No single circle may move but 
the condition for recognizing a maximum density 
packing is not obvious. In the cuboctahedral coordina- 
tion ( N =  12 and 6 = 6 0  °) each circle is restrained by 
four contacts from moving but, in fact, by a cooperative 
movement involving all twelve circles, the centres can 
move until they are 63.4 ° apart, when they each then 
make five contacts (Mackay, 1962). We are really 
dealing with paths in ( 2 N - 3 )  dimensional configura- 
tion space and more elaborate methods are necessary 
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for distinguishing maxima, minima, and saddle points. 
Finding the normal vibration spectrum (Hoare & Pal, 
1972) will give information only on the local volume in 
configuration space in the neighbourhood of a given 
geometrical arrangement. Full molecular dynamic or 
Monte Carlo procedures are, as in three-dimensional 
space, in danger of'locking in' to a false minimum, and 
require some 'softening' of the hard sphere as a 
temporary measure. For example, the sphere size 
could be temporarily reduced during the configura- 
tional space exploration to mimic thermalization 
procedures [such as used by Levitt & Warschel (1975) 
in simulating the folding of pancreatic trypsin in- 
hibitor]. Such procedures, however, cannot guarantee 
the finding of the ultimate minimum. 

Thus it is not surprising that, for a given value of N, 
there may be several stable configurations with very 
similar packing densities but different geometry. For 
example, Goldberg (1965) has examined three con- 
figurations for N = 18; namely (3, 3, 6, 3, 3) with ~ = 
47°26 ', (1,3,3,6,4,1) with 6=48°38 ', and (1,4,4,4,4,1) 
with 6=49°33 ' . Each of these configurations appears 
'locked' and in order to pass from one packing of 
circles to another, the circles would have to be shrunk 
before they could be moved. Such configurations, 

mutually inaccessible unless the circles are 'softened' or 
reduced in size, are relevant to the nucleation of crys- 
tals from the melt, and to the local structure of amor- 
phous solids. In nucleation a local cluster may well be 
locked into a local maximum of packing density 
(minimum energy), but cannot crystallize as the best 
local arrangement is inaccessible without temporary 
density reductions. It has been previously suggested 
(Finney, 1975a, b; 1976; Barker, Hoare & Finney, 1975) 
that several different, essentially non-crystalline amor- 
phous structures may exist, depending upon the precise 
nature of the intermolecular potential function, the 
conditions of preparation (e.g. rapid cooling from the 
melt or vapour deposition), and the nature of the 
boundary conditions (e.g. thin film or bulk materials). 
These geometrically dense clusters of similar density 
but different geometry illustrate in a simple way the 
possibility of such mutually inaccessible amorphous 
structures, and suggest what their local geometries 
might be. 

One characteristic which emerges from the table is 
that all the configurations are highly symmetrical, 
having at least one pronounced axis of three-, four- or 
fivefold symmetry. F/Sppl's (1912) notation, which 
shows the numbers of equivalent circles at the same 

N 6 degrees 
2 180 
3 120 
4 109.47122 
5 90 
6 9O 
7 77.86954 
8 74.85849 
9 70.52878 

10 66.14682 
11 63-43495 
12 63.43495 
13 57.13670 
14 55.67057 
15 53.66 

> 53-61202 
16 52.24439 
17 51.02655 
18 49.55159 
19 >47.42 
20 47.41439 
21 44.95599 
22 44.40313 
23 43-69077 
24 43.69077 
25 41-39306 
26 41.03024 
27 40.67758 
32 37.37737 
33 35-42 
42 31-71747 
60 26.82127 
72 24.83976 
92 21.35652 

122 18.71254 
0(3 

Table 1. The closest packings on a spherical surface 
(N/2) 

- cos (6/2)] 
Packing 
fraction 

1"00000 
0.75000 
0.84530 
0"73223 
0"87868 
0"77748 
0"82358 
0.82577 
0.81014 
0"82142 
0"89609 
0-79139 
0"80994 
0"80738 

>0"80596 
0.81714 
0-82887 
0.82841 

>0"80187 
0-84388 
0"79772 
0.81554 
0"82580 
0.86174 
0-80668 
0-82446 
0.84167 
0"84362 
0"78196 
0"79929 
0.81801 
0.84248 
0"79657 
0-81151 
0"90690 

Type of packing Point 
F~Sppl notation group 
(1,1) oo /mm 
(3) ~m2 
(1,3) or (2,2) ?t3m 
(1,4) 4mm 
(1,4,1) or (3,3) m3m 
(1,3,3) 3mm 
(4,4) 82m 
(3,3,3) 6m2 
(2,4,4) mm2 
(1,5,5) 5m 
(1,5,5,1) or (3,3,3,3) 5m3 
(1,4,4,4) 4mm 
(1,4,2,2,4,1) 7~2m 
(3,3,3,3,3) 3 

32 
(4,4,4,4) 82m 
(1,5,5,5,1) 5/mm 
(1,4,4,4,4,1) 82m 
(1,3,3,6,3,3) 3m 
(1,3,3,6,3,3,1) ~m2 
(1,5,5,5,5) 5m 
(1,5,5,5,5,1) 52 

1 
(4,4,4,4,4,4) 432 
(5,5,5,5,5) 5~ram 
(1,5,5,5,5,5) 5m 
(1,5,5,5,5,5,1) 5/mm 

5m3 
(3,3,(6),(9),(6),3,3) gin2 

5m3 
532 
532 
532 
532 

Notes 

arc cos ( -½); tetrahedral 
octahedral less one 
octahedral 
arc cos (½ cot 2 40 ° - ½) 
arc cos [(]/'8 - 1)/7] ; square antiprism 
arc cos (½) 
16r 6 - 44r* + 34r 2 - 7 = 0 where r = 1/[2 sin (6/2)] 
arc tan (2); icosahedral less one 
arc tan (2); icosahedral 

b.c.c, distorted to 7t2m 
estimated by van der Waerden 
calc. for more symmetrical arrangement at saddle point 

Goldberg (1965) 
Goldberg (1965) 
Goldberg (1965) 
Goldberg (1965) 

Snub cube less one 
Snub cube 

T = 3 tessellation oficosahedron 
Goldberg (1963) 
T=4  tessellation of icosahedron; arc tan (I/z) 
T= 7 less 12 points 
T= 7 icosa. 
T= 9 rotated 
T= 12 rotated 
n/(21,/3); h.c.p. 
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lat i tude in successive rings from the N pole to the S 
pole, is thus the most concise description. There not 
being strict proofs of the absoluteness of the maxima 
encountered,  there remains, in many cases, the doubt  
as to whether some solutions of low symmetry  may not 
be better. Clearly the most symmetrical  figures are the 
most  easily calculated and are unduly preferred. 
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A derivation is given of the probability distribution of the phase of a triple product ¢p = ~Phl +~0h2 +q~h3 
with h l + h2 + h3 = 0, employing a priori structural information. This derivation is valid if normalized group 
scattering factors are small and certain conditions for ht, ha, h3 are fulfilled. To derive this distribution it is 
necessary to regard the atomic position vectors as primitive random variables, not all independent in view 
of the structural information. It is also shown that if no structural information is available the expression 
for the probability distribution of the phase of a triple product, where the atomic position vectors are 
regarded as the primitive random variables, is identical to the one where hi, ha, h3 are regarded as the primi- 
tive random variables. In the first case certain conditions for h~, h2, h3 must be fulfilled; in the second the 
atomic position vectors are subject to certain conditions. 

Introduction 

Recently Main (1975) has generalized Cochran 's  (1955) 
formula for the phase probabi l i ty  of a triple product.  
In Main 's  formula a priori knowledge about  the 
structure can be used. The kinds of information which 
he has considered are (a) randomly  posit ioned atoms, 
(b) randomly  posit ioned and randomly oriented atomic 
groups, (c) randomly  posit ioned but correctly oriented 
atomic groups, (d) correctly positioned atoms. 

A rigorous mathemat ical  derivation of Main 's  
formula, which also shows its limitations, will be given 
for space group P1. 

The primitive random variables 

In this section we define the normalized structure factor 
for equal-a tom structures by 

1 n 
Eh -- NIl2 ~ exp (2nih. r~), (1) 

j = l  

where N is the number  of a toms in the unit cell and 
r~ is the position vector of a tom j. In deriving joint  
probabi l i ty  distr ibutions of structure factors defined 

by (1), two methods  can be followed. The first is to 
regard the structure as fixed, a l though unknown,  and 
one or more  reciprocal lattice vectors as the primitive 
random variables. The second is to regard the atomic 
posit ion vectors as the primitive random variables and 
the reciprocal lattice vectors as fixed. 

Let ~0h denote the phase of Eh and let P(cb]R~, R2, R3) 
denote the condit ional  probabil i ty  distr ibution of 
q)=q)hl -~-q)h2-'~-qgh3 with hi +h2+h3=0 ,  given ]Ebl], 
]Ehz] and [Eh3J (equal to R1, R2 and R3 respectively). 
Then P(cI)IR1,Rz,R3)dq~ is the probabil i ty that q~ lies 
between 4~ and q)+d4~, given [Ehl[, ]Ehzl and JEh3l. If 
the reciprocal lattice vectors hi,  h2 and ha are the 
primitive random variables, P(cI)JR 1, R2, R3)dq~ is equal 
to the fraction of the triple products  EhlEh2Eh3 of a 
fixed structure and with fixed values for ]Ehs I, [Eh2l and 
IEh3[, for which 4:, < g, < 4~ + d4~. If the atomic position 
vectors rj are the primitive random variables, 
P(4)IRx,Rz, R3)d@ is equal to the fraction of the triple 
products  EhlEhzEh3, with hl,hz,h3 fixed, of all struc- 
tures with N atoms in the unit cell and with fixed values 
for [Ehl], [Eh2 [ and [Eh3l, for which ¢b < q) < ¢b+ dcb. 

It has been found that with hi, h2 and h3 as the 
primitive random variables the only information 


